Practical Geology for Engineerng Students

Lab No Na	ame of Student
-----------	----------------

Igneous Lab

The main job today is to use <u>igneous texture</u> and <u>mineral composition</u> to identify igneous rocks.

Your Book contains extensive information about texture and composition which could be briefed here as follows:

1-Igneous Textures:

Crystalline Rocks (composed of interlocking mineral crystals)

Phaneritic (coarse grained)	Mineral crystals large enough to see and identify with hand
e.g., granite, diorite, gabbro	lens.
Aphanitic (fine grained) e.g.,	Mineral crystals too small to see and identify without significant
rhyolite, andesite, basalt	magnification
Porphyritic	Rock contains some mineral crystals that are much, much
e.g., porphyritic rhyolite,	larger than the crystals in the rest of the rock (e.g., aphanitic
porphyritic andesite, porphyritic	rock with some clearly visible crystals). The large crystals are
basalt	called phenocysts.
Pegmatitic	Phaneritic texture with very large crystals (>3 cm). Granite
	pegmatites frequently contain exotic minerals such as the
	gemstones tourmaline, garnets, topaz and spodumene.

Non-Crystalline Rocks (not composed of interlocking mineral crystals)

Glassy (e.g., obsidian)	Transparent in thin slices. Light-colored minerals sometimes found in volcanic glass (e.g., snowflake obsidian)
Vesicular (e.g., scoria)	Rock contains large openings corresponding to the position of gas bubbles that were preserved when the lava solidified. Minerals sometimes form in the voids after the lava has cooled.
Frothy (e.g., pumice)	Rock contains many tiny openings like those in vesicular rocks, but much smaller. The openings lower the density of the rock enough that some frothy-textured rocks float in water.
Pyroclastic (e.g., tuff)	Rock composed of materials blown into the air during an explosive eruption. Individual fragments range in size from microscopic ash to boulder-sized bombs.

2-Mineral Composition:

Common minerals in igneous rocks comprise:

Mineral	Chemical Formula	Group		
Quartz	SiO ₂	Oxides		
Muscovite	$KAl_2(Si_3Al)O_{10}(OH)_2$	Silic	ates	
K-Feldspar	KAISi ₃ O ₈	Silic	ates	
Plagioclase	NaAlSi ₃ O ₈ (albite) – NaAl ₂ Si ₂ O ₈ (anorthite)	Silicates		
Biotite	$K(Mg,Fe)_3[AlSi_3O_{10}(OH,F)_2]$	Silicates		
Horneblende	$Ca_2[Mg_4(Al,Fe]S_7AlO_{22}(OH)_2$	Silicates		
Augite	Ca(Mg,Fe,Mn,Fe3+, Ti, Al)₂(Al, Si)2O ₆	Silicates		
Olivine	(Mg,Fe)₂SiO₄	Silicates		
Magnetite	Fe ₃ O ₄	Non- Oxide		
Pyrite	FeS ₂	Silicates	Sulfides	

Composition of Igneous Rocks

	Rock will be composed primarily of one or more of the following minerals:	Rock <i>might</i> contain 1 or 2 of the following minerals:
Felsic granite, rhyolite, syanite	quartz, K-feldspar, plagioclase (Na-rich) (no quartz in syantite)	muscovite, biotite, amphibole (e.g., hornblende)
Intermediate diorite, andesite	plagioclase feldspar, amphibole (e.g., hornblende)	pyroxene (e.g., augite), biotite
Mafic gabbro, basalt	plagioclase (Ca-rich), pyroxene (e.g., augite)	amphibole (e.g., hornblende) olivine, magnetite
Ultramafic peridotite	olivine	plagioclase (Ca-rich), pyroxene (e.g., augite
pumice, scoria, tuff, obsidian	None	None (usually)

Steps of work

1- Using texture

1- Phaneritic and Pegmatitic textures ⇒ Indicate plutonic (Intrusive) origin.

2- Aphanitic, vesicular, Porphyritic, glassy, frothy and pyroclastic textures ⇒ Indicate Volcanic (Extrusive).

2- Using mineral composition:

- 1- Presence of quartz indicate acidic composition.
- 2- Presence of feldspars (frrquently zoned plagioclase) and amphiboles together (with no or scarce quartz) indicate intermediate composition.
- 3- Presence of Ca-rich plagioclase feldspars and pyroxenes in absence of quartz indicate basic composition.
- 4- Presence of olivine and/or pyroxene and/or amphibole in quiet absence of both quartz and feldspars indicate ultrabasic composition.

3- Using Grainularity (Grain size):

Fine - medium - coarse

- 1- Absence of grains (glasses, froths) indicate volcanic origin.
- 2- Fine grained crystals (< 1mm across) also indicate volcanic origin.
- 3- Medium grained crystals (1-3 mm across) indicate hypabyssal origin (i.e. formation in dykes or sills).
- 4-Coarse grained crystals (> 3mm) indicate plutonic (intrusive) origin (I.e. formation in batholiths, Lacoliths, Stocksetc).
- 5- Huge crystals (in decimeter scale or more) indicate late formation in the magma.

Sample No	Texture	Origin Plut/Vol	Mineral composition	Type Acid/ Int/ Bas/Ult	Name
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					

Signature of Demonstrator

Practical Geology for Engineering Students

Lab No	Name of Student
--------	-----------------

Sedimentary Lab

1-Description of Terrigenous Soils and Rocks*:

Grain Size	Class	Deposits (Soil)	Texture	Rocks	
> 2 mm		v. coarse - Rounded	Breccia		
> 2 mm	Rudaceous	Gravels	v. coarse - Angular	Conglomerate	
			Siliceous Cement		
2- 1/16 (0.06) mm	Arenaceous	Sands Cement Hematiti	Calcareous Cement	Sandstone	
			Hematitic Cement		
1/16 - 1/156 (0.06)-(0.004) mm	nm Silts		Fine grained	Mudrocks	
< 1/256	Aargillaceous	Clave	massive		
mm		Clays	Fissile	Shale	

വ	our.	
~~	ou:	

Texture:

Grain Size: > 2 mm, 2- 1/16 mm, 1/16 - 1/156 mm or < 1/256 mm

Roundness: Angular, Subangular, Subrounded and Rounded.

Structure: Massive, Laminated, Fissile

Cement: - Siliceous (colourless/white and doesn't react with HCl).

- Calcareous (colourless/white and reacts with HCl with effervescence).
- Hematitic/calcareous (Red coloured & reacts with HCl with effervescence).
- Hematitic/Siliceous (Red coloured and doesn't react with HCl).

Fossil content:

- Fossiliferous
- Non-fossiliferous

Type:	 	 	
Nama:			

st Samples to be studied: Many samples under the 8 names as in the shaded columns of the above given table

2-						
/-		m	DC	ΓN	n	ρc
_	_,,			··		LJ

3-Rock Salt

Calarina
Colour:
Structure:
Carbonate mud (Fine crystalline limestone).
Oolites
Skeletal remains (Shells, corals,etc)
Cement:
Siliceous (Hard and weak reaction with HCl)
Calcareous (Soft white and reacts with HCl with strong effervescence).
Hematitic (reddish stained)
Fossil Content:
Fossiliferous
Non-fossiliferous
Type:
Name:
Samples to be studied: Many samples under <u>only</u> the following names: 1-Chemical Limestone 2-Biochemical Limestone
3-Evaporites
Colour:
Mineral Composition:
Fossil Content:
Fossiliferous
Non-fossiliferous
Туре:
Name:
Samples to be studied: Many samples under only the following names:
1-Gypsum 2-Anhydrite

Sample No	Colour	Texture/Structure	Cement	Type Terr/Chemical/L.S	Name
1					Gravel / Rudaceous Soil
2					Sands/ Arenaceous Solil
3					Argillaceous soil
4					Conglomerate
5					Breccia
6					Sandstone
7					Siltstone
8					Shale
9					Claystone
10					Chemical Limestone
11					Biochemical Limestone
12					Gypsum
13					Ahhydrite
14					Rock Salt

Geology Lab		Dr. Ah A AlShaikh